Retinal computations

Some text… (coming soon)

Related key publications

Zhou M*, Bear J*, Roberts PA, Janiak FK, Semmelhack J, Yoshimatsu T, Baden T§. (2020). Zebrafish Retinal Ganglion Cells Asymmetrically Encode Spectral and Temporal Information Across Visual Space. Current Biology 30, 2927-2942. (bioRxiv version). direct link. pdf.

Yoshimatsu T§, Schroeder C, Nevala NE, Berens P, Baden T§. (2020). Fovea-like Photoreceptor Specializations Underlies Single UV Cone Driven Prey-Capture Behaviour in Zebrafish. Neuron (107):1-18. direct link. (bioRxiv version)pdf. Primer by Westo and Ala-Laurila.

Zimmermann MJY*, Nevala NE*, Yoshimatsu T*, Osorio D, Nilsson DE, Berens P, Baden T§. (2018). Zebrafish differentially process colour across visual space to match natural scenes. Current Biology 28(1-15). direct link. (bioRxiv version). pdf.

Franke K*, Berens P*Schubert TBethge MEuler T§Baden T§. (2017). Inhibition decorrelates visual feature representations in the inner retina. Nature; doi: 10.1038/nature21394. pdf. direct link. (bioRxiv version). News and Views by Dick Masland.

Baden T*, Berens *P, Franke K*, Roman Roson M, Bethge M, Euler T§. (2016). The functional diversity of mouse retinal ganglion cells. Nature. doi:10.1038/nature16468.pdf; direct link. F1000 recommendation by Dick Masland.

Baden T*, Nikolaev A*, Esposti F, Dreosti E, Odermatt B and Lagnado L§. (2014). A synaptic mechanism for temporal filtering of visual signals. PLoS Biology. 12(10): e1001972. doi:10.1371/journal.pbio.1001972. pdf Supplementary [1] [2] [3] [4] [Primer by Suh & Baccus].

Baden T*, Schubert T*, Chang L, Wei T, Zaichuk M, Wissinger B and Euler T§. (2013). A Tale of Two Retinal Domains: Near Optimal Sampling of Achromatic Contrasts in Natural Scenes Through Asymmetric Photoreceptor Distribution. Neuron 80: 1206-1217. pdf Supplementary [1].

Baden T§, Berens P, Bethge M and Euler T. (2013). Spikes in Mammalian Bipolar Cells Support Temporal Layering of the Inner Retina. Current Biology 23(1), 48-52 pdf Supplementary [1].

Baden T, Esposti F, Nikolaev A and Lagnado L§. (2011). Spikes in retinal bipolar cells code visual stimuli with millisecond precision. Current Biology(21): 1-11. pdf Supplementary [1].

Dreosti E*, Esposti F*, Baden T and Lagnado L§. (2011). In vivo evidence that retinal bipolar cells generate spikes modulated by light. Nature Neuroscience14(8): 951-2. pdf Supplementary [1].

 

Reviews

Baden T§, Euler T, Berens P. Understanding the retinal basis of vision across species. Nature Reviews Neuroscience doi:10.1038/s41583-019-0242-1. direct linkpdf.

Baden T§ and Osorio D§. The Retinal Basis of Vertebrate Color Vision. Annual Review of Vision Science (5). (preprints.org version). direct link. pdf. F1000 recommendation by G Fain.

Baden T§, Schubert T, Berens P, Euler T. The Functional Organization of Vertebrate Retinal Circuits for Vision. In Oxford Research Encyclopedia of Neuroscience. Ed. S. Murray Sherman. New York: Oxford University Press. DOI 10.1093/acrefore/9780190264086. direct link. pdf.

Franke K and Baden T. General features of inhibition in the inner retina. Journal of Physiology doi 10.1113/JP273648; direct link.pdf.

Euler T§, Haverkamp S, Schubert T and Baden T. (2014). Retinal Bipolar cells: Elementary building blocks of vision. Nature Reviews Neuroscience. 15:507-519. pdf Suppementary [1] [2].

 

Main people involved in retinal computation work

Takeshi Yoshimatsu

Takeshi Yoshimatsu

Retinal circuits

Philipp Bartel

Philipp Bartel

Retinal circuits

Tessa Herzog

Tessa Herzog

Cones

Maxime Zimmermann

Maxime Zimmermann

Bipolar cells

Xinwei Wang

Xinwei Wang

Amacrine cells

Mingyi Zhou

Mingyi Zhou

RGCs

Tom Hagley

Tom Hagley

Brain projections

Paul A Roberts

Paul A Roberts

Adult zebrafish retina

Georgios Kafetzis

Georgios Kafetzis

Elasmobranch retina

Marvin Seifert

Marvin Seifert

Avian retina